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Topic 5.6: Linear Regression and the Optimization Perspective
Prof. Philip S. Thomas (pthomas@cs.umass.edu)



Review: Regression

 X: Input (also called features, attributes, covariates, or

predictors)

* Typically, X is a vector, array, or list of numbers or strings.

* Y: Output (also called labels or targets)

* Inregression, Y is a real number.
An input-output pairis (X,Y).

_et n, called the data set size, be the number of input-output
pairs in the data set.

et (X;, Y;) denote the i*! input output pair.

* The complete data set is

(Xi’ Yi)?=1 — ((XlJ Yl): (XZJ YZ); ) (XTU Yn))



Review: Nearest Neighbor (Variants)

* Given a query input xqyery, find the k nearest points in the training
data.

* Return a weighted average of their labels.

 k = 1is nearest neighbor
* k > 1 with all w; equalis k-nearest neighbor
* k > 1 with not all w; equal is weighted k-nearest neighbor

* These algorithms don’t pre-process the training data much.
* They can build data structures like KD-Trees for efficiency.



Linear Regression

 Search for the line that is a best fit to the data.
* Different performance measures correspond to different ways of
measuring the quality of a fit.

* Sample mean squared error, or the sum of the squared errors is
particularly common:

MQE . 1y 5.2 AN 5.2
* Although not identical, the line that minimizes one also minimizes the
other.

* Using sample MSE, this method is called “least squares linear
regression.”



Linear Regression: What is a line?

= mx + b

TN

Predlctlon y;i Slope,m Input, x; vy-intercept,b

\/

“weights,” or “parameters”, w = (wy,w,)

~\

Yy = wix; + w,



Models (Review)

* Amodel is a mechanism that maps input data to predictions.

* ML algorithms take data sets as input and produce models as

output.
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Parametric Model

* Amodel “parameterized” by a weight vector w.
* Different settings of w result in different predictions.

*Lety = fu,(x)

e 1-dimensional linear case:
fw(X) = wix + w,



Linear Regression: Hyperplanes

* What if we have more than one input feature?

* Letx; = (x;1,%X;2,..,X;q) be ad-dimensionalinput.

* We include the i subscript to make it clear that 1,2,... aren’t referencing
different input vectors, but different elements of one input vector.

* We use a hyperplane:
fw(xi) = wixip +woXxis + o+ WaXig + Wayq.

, _ _ The offset, bias, or intercept term, which
Slope along the first dimension gives the prediction when the input features

are all zero.
Rate of change of the prediction as

the first feature increases Slope along the second dimension
Rate of change of the prediction as the second feature increases



Linear Regression (cont.)

fw (X)) = wixig +Woxis + ot wXig + Wagq.

* Thought: We don’t want to have to keep remembering a special
“intercept” term.

* ldea: Drop the intercept term!

* |f you want to include the intercept term, add one more feature to your data set,
Xg+1 = 1.
 Ifd is the dimension of the input with this additional feature, we then have:
fw (X)) = wixjq +waxis + o+ WeXig
* We can write this as:

d
fw(x) = z Wi X; ;.
=1

* This is called a dot product and can be written asw - x; or w” x;.



Linear Regression (cont.)

d
9= fu ) = Y i,
j=1

* How many weights (parameters) does the model have?
* d, the dimension of any one input vector x;.
* Notn, the number of training data points.



Linear Regression: Optimization Perspective

* Given a parametric model f,, of any form how can we find the weights w that
result in the “best fit”?

e Let L be afunction called a loss function.
* |ttakes as input a model (or model weights w)

* |talsotakes asinputdata D
* It produces as output a real-number describing how bad of a fit the model is to the
provided data.

* The evaluation metrics we have discussed can be viewed as loss functions.
For example, the sample MSE loss function IS

2
2
L(W) 2()’1 yl) 2(3’1 fW (xl)) For the sample MSE loss
\ function, this can be any

* We phrase this as an optlmlzatlon problem. arametric model. not
p :
argmin,, L(w, D) just a linear one!



Linear Regression: Optimization Perspective

argmin,, L(w,D)

* Recall: argmin returns the w that achieves the minimum value of
L(w, D), not the minimum value of L(w, D) itself.

* This expression describes a massive range of ML methods.
e Supervised, unsupervised, (batch/offline) RL

* Deep neural networks
* Large language models and generative Al

* Different problem settings and algorithms in ML correspond to:

* Different loss functions
* Different parametric models.
* Different algorithms for approximating the best weight vector w.



Least Squares Linear Regression (cont.)

* Find the weights w that minimize

Lw,D) == Z(yl fu )’

Number of training data points / Dimension of each input vector
/ (number of features per row)

L(W,D)——Zn:( iwxl]>

j=1



Linear Regression: Least Squares Solvers

* How should one solve this problem?

argmin,,, nz Vi — ijxl j

=1
* Answer: “Least squares solvers”
* Algorithms based on concepts from linear algebra.
* Extremely effective for solving problems of precisely this form.

* Beyond the scope of this class.

* Only useful for this exact problem.
* Not effective when using other parametric models (e.g., not linear)
* Not effective when using other loss functions / performance metrics.



Linear Regression

* How do we solve this problem’?

argmin,,, nz Vi — ijxl j

i=1
* We will study a different approach for solving this problem.
* |t /s less efficient.

* [t applies to almost all loss functions and parametric models
of interest.

* Method: Gradient descent.
 Soon we will discuss gradient descent.
* For now, assume we have some way of finding the argmin,, L(w, D).



Least Squares Linear Regression

Least Squares Linear Regression
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Linear Regression vs Weighted k-NN for GPA
Prediction

Weighted KNN Model:
Average MSE: 0.571

MSE Standard Error: 0.004 Very simple method achieves

nearly the same performance
as a tuned-version of

Linear Regression Model: weighted k-NN!
Average MSE: 9.582<« Soon, we will consider more
MSE Standard Error: 0.004 complex parametric models

that can be even more
effective.



Linear Regression Limitation

* What if the relationship between the inputs and outputs is not
linear (or affine)?
* Linear: A;x;1 + Ayx; o + -+ Apxi
* Affine: A1x;1 +Axx;,+ -+ Apx;n + b

* Equivalentto linear with an additional feature x; ,4; = 1.

* |[dea: Have parametric functions that can represent more than
linear functions!



Linear Parametric Model #Linear Functions

* Linear parametric functions are functions f,, (x;) that are linear functions
of the weights w.

* They need not be linear functions of the input x;.

Each feature is a real number

(nota vector or array) Note: Each feature can depend on more than one
element of x;. So, thisis ¢; (x;) not gbl(xl-,l).

Feature 1:

¢q(x;)

Feature
Input x; |—>
el generator ¢

Feature 2: Linear Regression: Prediction, J;
. . ¢2(x;) fw (X)) = widy(x;) + wapo(x;) + -+
Note: The input x; is
a vector —an array
of values.
Feature m: Note: This is equivalent to pre-processing the data,

converting x; (length d) into ¢(x;) (length m)

bm (x;)




Linear Parametric Model #Linear Functions

* Linear parametric functions are functions f,, (x;) that are linear
functions of the weights w.

* They need not be linear functions of the input x;.
* That is, a linear parametric modelplas the form:

fw(xi) = z wjd;(x;),
=1

where ¢ takes the input vector x; as input and produces a vector of m
features as output. Thatis, ¢;(x;) is the j" feature output by ¢.

* ¢ is called the basis function, feature generator, or feature mapping
function.



Linear Parametric Model

fw(xi) = z w;p;i(x;)
=

* Polynomial basis
* Ifx; € Rthen ¢;(x;) = x/ " so that:
() = [1,x, %7, %7, ., 2]V
* Here m — 1 isthe degree or order of the polynomial basis.
o fi(x) =wy +wox; + wax? +wex? + -+ wyx™ !
We are fitting a polynomial to the data!
This is a non-linear function of the input x;
This can represent any smooth function (if m is big enough).

This is a linear function of w.
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